Power Bounded Composition Operators in Several Variables
نویسنده
چکیده
Let φ be an analytic self-map of the open unit polydisk D , N ∈ N. Such a map induces a composition operator Cφ acting on weighted Banach spaces of holomorphic functions. We study when such operators are power bounded resp. uniformly mean ergodic. Mathematics Subject Classification (2010): 47B33, 47B38
منابع مشابه
Weighted composition operators between Lipschitz algebras of complex-valued bounded functions
In this paper, we study weighted composition operators between Lipschitz algebras of complex-valued bounded functions on metric spaces, not necessarily compact. We give necessary and sufficient conditions for the injectivity and the surjectivity of these operators. We also obtain sufficient and necessary conditions for a weighted composition operator between these spaces to be compact.
متن کاملCompact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions
We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.
متن کاملPower bounded weighted composition operators
We study when weighted composition operators Cφ,ψ acting between weighted Bergman spaces of infinite order are power bounded resp. uniformly mean ergodic.
متن کاملBilateral composition operators on vector-valued Hardy spaces
Let $T$ be a bounded operator on the Banach space $X$ and $ph$ be an analytic self-map of the unit disk $Bbb{D}$. We investigate some operator theoretic properties of bilateral composition operator $C_{ph, T}: f ri T circ f circ ph$ on the vector-valued Hardy space $H^p(X)$ for $1 leq p leq +infty$. Compactness and weak compactness of $C_{ph, T}$ on $H^p(X)$ are characterized an...
متن کاملSeparating partial normality classes with weighted composition operators
In this article, we discuss measure theoretic characterizations for weighted composition operators in some operator classes on $L^{2}(Sigma)$ such as, $n$-power normal, $n$-power quasi-normal, $k$-quasi-paranormal and quasi-class$A$. Then we show that weighted composition operators can separate these classes.
متن کامل